

Enantioselective Separation of Atropisomeric PBB 132 and PBB 149 in Extracts from a Norwegian White-Tailed Sea Eagle Egg

Arntraut Götsch¹, Espen Mariussen², Roland von der Recke¹, <u>Dorte Herzke²</u>, Walter Vetter¹, Urs Berger² ¹ University of Hohenheim, Institute for Food Chemistry, Stuttgart, Germany ² Norwegian Institute for Air Research (NILU), Kjeller and Tromsø, Norway

INTRODUCTION

Technical mixtures of polybrominated biphenyls (PBBs) have been extensively used as flameretardants in textile and electronic industries, and as additives in plastics¹. Despite a continuous reduction of the production in the last decades, the presence of PBBs in the environment was recently confirmed in a wide range of samples². Under environmental conditions, many PBB congeners form stable atropisomers. The enantiomer separation of atropisomeric PBBs isolated from a technical mixture was recently published³. The purpose of this work was to study the enantioselective fate of the environmentally relevant PBBs 132 (2,2',3,3',4,6'-hexabromobiphenyl) and 149 (2,2',3,4',5',6- hexabromobiphenyl, Figure 1) in egg extracts from Norwegian birds of prey.

Figure 1. Structures of atropisomers of PBB 149

EXPERIMENTAL

- Egg sample: A non-hatched white-tailed sea eagle egg from Vikna (Norway) collected in 1998. This egg contained 17 ng/g wet weight sum PBBs, whereof 10 ng/g wet weight PBB 153⁴
- Sample preparation: Homogenisation with Na₂SO₄, cold-column extraction, GPC, florisil column, group separation on silica column⁵, normal phase HPLC fractionation
- Enantioselective HPLC: Enantioseparation of PBB 132 on a column coated with heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin on silica employing a flow of 0.5 mL/min acetonitrile/water (60:40, v/v)³. Quantitative analysis of HPLC fractions by non-chiral GC/EI-MS
- Enantioselective GC/EI-MSMS: Enantioseparation of PBB 149 on a column coated with 35 % randomly derivatized 6-O-tert.-butyl-dimethylsilyl-2,3-di-O-methyl-β-cyclodextrin in PS086 (β-TBDM)³. EI-MSMS detection: m/z 627.6 → m/z 546.7

Sample preparation

not detected

 Table 1. Separation of brominated compounds from PCBs on 8 g silica

Approximately 12 ng PBB 132 and 3 ng PBB 149 were enriched in two different fractions from 20 g egg sample (see Table 2)

RESULTS AND DISCUSSION Enantioselective separation of PBB 132 atropisomers

Figure 2. A) HPLC/UV enantioseparation of a PBB 132 reference standard isolated from the technical mixture. B) GC/EI-MS chromatograms of the five fractions obtained from enantioselective HPLC separation of the white-tailed sea eagle egg extract.

Enantiomeric ratio: Bird egg (Figure 2B) 0.92 - 0.99 (n=4)

Figure 3. Enantioselective GC/EI-MSMS separation of PBB 149 in the technical mixture Firemaster BP-6 $^{\odot}$ (A) and an extract of the white-tailed sea eagle egg (B).

Enantiomeric ratio: Bird egg (Figure 3B) 0.68 – 0.72 (n=3) Firemaster® (Fig. 3A) 0.97 – 1.02 (n=4)

CONCLUSIONS

- A very efficient clean-up of the egg sample was developed, leaving mainly PBBs in the extract.
- Atropisomers of PBB 132 could not be separated by enantioselective GC. A combination of enantioselective HPLC and non-chiral GC/MS quantification of the HPLC extracts proved to be successful. Deviation from the racemic mixture could not be found for PBB 132 atropisomers in the white-tailed sea eagle egg.
- Atropisomers of PBB 149 were successfully separated by enantioselective GC/EI-MSMS. An enantiomeric ratio of 0.7 and hence a deviation from the racemic ratio was found in the Norwegian bird of prey egg.

REFERENCES

- de Boer, J., de Boer, K., Boon, J.P. (2000) Polybrominated biphenyls and diphenylethers; in: The Handbook of Environmental Chemistry, Vol 3, Part K, Paasivirta J. Ed., Springer Verlag
 BFR (2001) The Second International Workshop on Brominated Flame Retardants, 14.-16.5.2001, Proceedings, The Swedish Environmental Protection Agency
- 3. Berger, U., Vetter, W., Götsch, A., Kallenborn, R. (2002) J. Chromatogr. A, 973, 123-133
- 4. Herzke, D., Berger, U., Kallenborn, R., Nygård, T., Vetter, W. Chemosphere, submitted
- 5. Krock, B., Vetter, W., Luckas, B. (1997) Chemosphere, 35, 1519-1530