Fant 9801 publikasjoner. Viser side 380 av 393:
Limits to graphite supply in a transition to a post-fossil society
Transitioning to electric vehicles (EVs) powered by lithium-ion batteries (LIBs) aims at reducing emissions in the transportation sector, thereby decreasing fuel oil use and crude oil extraction. Yet, synthetic graphite, a crucial anode material for LIBs, is produced from needle coke, a byproduct of oil refining. This dependency could lead to bottlenecks in battery anode production. We found no obvious supply constraints for synthetic graphite in slow electrification scenarios based on different International Energy Agency scenarios. In contrast, net zero scenarios reveal drastic limitations in synthetic graphite supply, due to fast electrification and declining needle coke production. Natural graphite can mitigate supply limitations but faces environmental concerns, long development time and geopolitical concerns. Securing graphite supply while reaching the net zero goals requires comprehensive strategies combining (1) systematic graphite recycling, (2) overcoming current technical challenges, and (3) behavioral shifts towards reduced vehicle ownership and smaller vehicles.
Elsevier
2024
Atmospheric volatile organic compounds (VOCs) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP MSC-W) CTM to evaluate emission inventories in Europe. Here we undertake the first intensive model–measurement comparison of VOCs in 2 decades. The modelled surface concentrations are evaluated both spatially and temporally, using measurements from the regular EMEP monitoring network in 2018 and 2019, as well as a 2022 campaign. To achieve this, we utilised the UK National Atmospheric Emissions Inventory to derive explicit emission profiles for individual species and employed a tracer method to produce pure concentrations that are directly comparable to observations.
The degree to which the modelled and measured VOCs agree varies depending on the specific species. The model successfully captures the overall spatial and temporal variations of major alkanes (e.g. ethane, n-butane) and unsaturated species (e.g. ethene, benzene) but less so for propane, i-butane, and ethyne. This discrepancy underscores potential issues in the boundary conditions for the latter species and in their primary emissions from, in particular, the solvent and road transport sectors. Specifically, potential missing propane emissions and issues with its boundary conditions are highlighted by large model underestimations and smaller propane-to-ethane ratios compared to the measurement. Meanwhile, both the model and measurements show strong linear correlations among butane isomers and among pentane isomers, indicating common sources for these pairs of isomers. However, modelled ratios of i-butane to n-butane and i-pentane to n-pentane are approximately one-third of the measured ratios, which is largely driven by significant emissions of n-butane and n-pentane from the solvent sector. This suggests issues with the speciation profile of the solvent sector, underrepresented contributions from transport and fuel evaporation sectors in current inventories, or both. Furthermore, the modelled ethene-to-ethyne and benzene-to-ethyne ratios differ significantly from measured ratios. The different model performance strongly points to shortcomings in the spatial and temporal patterns and magnitudes of ethyne emissions, especially during winter. For OVOCs, the modelled and measured concentrations of methanal and methylglyoxal show a good agreement, despite a moderate underestimation by the model in summer. This discrepancy could be attributed to an underestimation of contributions from biogenic sources or possibly a model overestimation of their photolytic loss in summer. However, the insufficiency of suitable measurements limits the evaluation of other OVOCs. Finally, model simulations employing the CAMS inventory show slightly better agreements with measurements than those using the Centre on Emission Inventories and Projections (CEIP) inventory. This enhancement is likely due to the CAMS inventory's detailed segmentation of the road transport sector, including its associated sub-sector-specific emission profiles. Given this improvement, alongside the previously mentioned concerns about the model's biased estimations of various VOC ratios, future efforts should focus on a more detailed breakdown of dominant emission sectors (e.g. solvents) and the refinement of their speciation profiles to improve model accuracy.
2024
The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O
Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.
American Geophysical Union (AGU)
2024
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2023
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2023 was characterized by low ozone values in winter, high spring values, and annual average total ozone values slightly below the long-term mean.
NILU
2024
Nå kan forskere lenke direkte til data om atmosfæren i vitenskapelige artikler
Norges forskningsråd
2024
Per- and polyfluoroalkyl substances (PFAS) are persistent anthropogenic contaminants, some of which are toxic and bioaccumulative. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) can form during the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs), N-alkylated perfluoroalkane sulfonamides (FASAs), and hydrofluorocarbons (HFCs). Since PFCAs and PFSAs will readily undergo wet deposition, snow and ice cores are useful for studying PFAS in the Arctic atmosphere. In this study, 36 PFAS were detected in surface snow around the Arctic island of Spitsbergen during January–August 2019 (i.e., 24 h darkness to 24 h daylight), indicating widespread and chemically diverse contamination, including at remote high elevation sites. Local sources meant some PFAS had concentrations in snow up to 54 times higher in Longyearbyen, compared to remote locations. At a remote high elevation ice cap, where PFAS input was from long-range atmospheric processes, the median deposition fluxes of C2–C11 PFCAs, PFOS and HFPO–DA (GenX) were 7.6–71 times higher during 24 h daylight. These PFAS all positively correlated with solar flux. Together this suggests seasonal light is important to enable photochemistry for their atmospheric formation and subsequent deposition in the Arctic. This study provides the first evidence for the possible atmospheric formation of PFOS and GenX from precursors.
2024
2024
2024
Urbanization presents numerous societal challenges and exacerbates environmental issues. It is crucial to comprehend the current state and future direction of cities to formulate strategies and actions that mitigate negative consequences while ensuring a prosperous future for citizens. This study presents a universally applicable method for selecting indicators to gauge urban environmental sustainability. It aims to aid in structuring thinking for understanding and implementing Sustainable Development Goals (SDGs) within urban settings, using Norway as a case study but with a clear potential for broader applications. To achieve this, a comprehensive literature survey was conducted to gain insight into how urban environmental sustainability is conceptualized and operationalized in Norway. This involved assessing the key environmental challenges, as well as the strategies and action plans associated with them. Standardized sustainable cities' indicators served as references, which were then tailored to the municipal level to address the identified environmental challenges specific to Norwegian cities. Furthermore, the study discussed the proposed indicators for tracking the progress and state of these specific environmental challenges. In doing so, it establishes a foundation for comprehending environmental issues and establishing connections between indicators and environmental strategies and action plans in the urban sustainability context. Importantly, the methodologies and indicators we have unveiled in this study are designed to be applicable to cities beyond Norway, offering a scalable and adaptable approach for evaluating environmental challenges internationally. This work proposes a novel approach for evaluating the status and trends of environmental challenges by employing targeted indicators. These indicators can be expanded to include social and economic dimensions, enabling decision-makers and stakeholders to prioritize actions towards urban sustainability.
Elsevier
2024
Recently, chlorinated paraffins with carbon chain lengths in the range C14–17 and chlorination levels at or exceeding 45 per cent chlorine by weight have been proposed for listing under the Stockholm Convention. To aid the process of determining the identification of sum polychlorinated alkanes ΣPCAs C14-17 under the regulation (i.e. number of chlorines), there is a need for data from environmental samples that specifies the homologue group profiles, not just ΣPCAs.
In this report we present data on PCAs with a focus on ΣPCAs C14-17 from the Norwegian Environment Agency’s monitoring programmes in more detail than available in the programmes reports, focusing on homologue group patterns and chlorination degree. The programmes are i) Environmental pollutants in the terrestrial and urban environment ii) Atmospheric contaminants iii) Environmental contaminants in an urban fjord. Data presented are from the 2022 (Halvorsen et al., 2023; Heimstad et al., 2023; Ruus, 2023) and 2023 (reports in prep) programmes.
NILU
2024
Vitenskapskomiteen for mat og miljø (VKM) har oppdatert et metodedokument for helse og miljørisikovurderinger av plantevernmidler.
Målet med oppdateringen er å gjenspeile gjeldende regelverk og praksis, og sikre kvaliteten på fremtidige risikovurderinger utført av faggruppen for plantevernmidler i VKM. Det forrige metodedokumentet er fra 2012, og oppdateringen var nødvendig for å tilpasse metodene til nytt EU-regelverk for plantevernmidler, og for å innarbeide nye datakrav og retningslinjer for plantevernmidler og biocider. Ved å oppdatere metodedokumentet, ønsket faggruppen å sikre at risikovurderingene de leverer er i tråd med gjeldende regelverket og vitenskapelig kunnskap.
Viktige endringer
Dokumentet er oppdatert med henvisninger til nye forskrifter og veiledninger, om for eksempel biocider, nye typer plantevernmidler, og forenklet godkjenning/risikovurdering for mikrobielle stoffer. Det nye dokumentet inneholder også veiledning om fareidentifikasjon av stoffer med hormonforstyrrende egenskaper, alternative metoder for å redusere toksikologisk testing hos dyr, og vurdering av ikke-kostholdeksponering av plantevernmidler.
Dokumentet inneholder oppdatert informasjon om metodikk knyttet til vurdering av plantevernmidlers egenskaper og skjebne i miljøet, inkludert norske jord- og klimaforhold, renseanlegg og drikkevannsrenseprosesser. Veiledning om risikovurdering for bier og andre insekter, akvatiske organismer, fugler, pattedyr og andre vertebrater, samt meitemark og andre jordlevende organismer, er også oppdatert. Innen flere av feltene er eller vil det bli etablert spesifikke beskyttelsesmål og trinnvise risikovurderinger.
Samlet sett fungerer det oppdaterte metodedokumentet som en referanse for VKMs risikovurderingsarbeid for plantevernmidler, og sikrer at fremtidige vurderinger gjennomføres i samsvar med gjeldende regelverk og vitenskapelig kunnskap.
Metode
VKM har benyttet en semi-systematisk tilnærming, ved å utarbeide et arbeidsdokument for innhenting og sammenstilling av nødvendig informasjon om nye datakrav fra gjeldende regelverk for plantevernmidler og biocider i EU.
Dokumentet er godkjent av VKMs faggruppe for plantevernmidler.
2024
2024
2024
Monitoring aerosol optical depth during the Arctic night: Instrument development and first results
Moon-photometric measurements were made at two locations in the Arctic during winter nights using two different modified Sun photometers; a Carter Scott SP02 and a Precision Filter Radiometer (PFR) developed at PMOD/WRC. Values of aerosol optical depth (AOD) were derived from spectral irradiance measurements made at four wavelengths for each of the devices. The SP02 was located near Barrow, Alaska and recorded data from November 2012 to March 2013, spanning five lunar cycles, while the PFR was deployed to Ny-Ålesund, Svalbard each winter from February 2014 to February 2019 for a total of 56 measurement periods. A methodology was developed to process the raw data, involving calibration of the instruments and normalizing measured spectral irradiance values in accordance with site-specific determinations of the extraterrestrial atmospheric irradiance (ETI) as Moon phase cycled. Uncertainties of the derived AOD values were also evaluated and found to be in the range, 0.006–0.030, depending on wavelength and which device was evaluated.
The magnitudes of AOD determined for the two sites were in general agreement with those reported in the literature for sunlit periods just before and after the dark periods of Arctic night. Those for the PFR were also compared with data obtained using star photometers and a Cimel CE318-T, recently deployed to Ny-Ålesund, showing that Moon photometry is viable as a means to monitor AOD during the Arctic night. Such data are valuable for more complete assessments of the role aerosols play in modulating climate, the validation of AOD derived using various remote sensing techniques, and applications related to climate modeling.
Elsevier
2024
2024
2024
Assessing the environmental burden of disease related to air pollution in Europe in 2022
This report evaluates the health burden due to long-term exposure to PM2.5, NO2, and O3 across Europe in 2022. By analysing all-cause and cause-specific mortality and morbidity, it estimates disease burden using four indicators: Attributable Deaths (AD), Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years (DALY). However, the main results only consider the impact of exposure to levels of pollutants exceeding the current WHO air quality guidelines. The results indicate that PM2.5 contributes the most significant health impact (linked to six diseases), resulting in over 2.7 million DALY across 40 countries, and resulting in 269 000 AD, with mortality rates peaking in Eastern Europe. The report introduces methodological advancements, assessing the long-term impacts of O3 for the first time. Findings underscore the critical need for targeted air quality interventions, as pollution continues to drive significant health losses across the continent, particularly among vulnerable populations.
ETC/HE
2024
The report provides the annual update of the European air quality concentration maps and population and vegetation exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, peak season average of maximum daily 8-hour means, SOMO35, SOMO10), NO2 (annual average) and benzo(a)pyrene (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2022. The report contains also maps of Phytotoxic ozone dose (PODY) for selected crops (wheat, potato and tomato) and trees (spruce and beech) and NOx annual average map for the same year 2022. The ozone map of peak season average of maximum daily 8-hour means is presented for the first time. The trends in exposure estimates in the period 2005–2022 are summarized. The analysis for 2022 is based on the interpolation of the annual statistics of the 2022 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database, complemented, when needed, with measurements from additional sources. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2022 in comparison to the five-year average 2017-2021 using the difference maps and exposure estimates.
ETC/HE
2024