Fant 9801 publikasjoner. Viser side 392 av 393:
2025
Indian Land Carbon Sink Estimated from Surface and GOSAT Observations
The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.
MDPI
2025
A case study of the effect of permafrost peat on fires in the Arctic using Sentinel-5P data
Elsevier
2025
2025
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
John Wiley & Sons
2025
Frontiers Media S.A.
2025
Using a citizen science approach to assess nanoplastics pollution in remote high-altitude glaciers
Nature Portfolio
2025
2025
Supervised Anomaly Detection in Univariate Time-Series Using 1D Convolutional Siamese Networks
In time-series data analysis, identifying anomalies is crucial for maintaining data integrity and ensuring accurate analyses and decision-making. Anomalies can compromise data quality and operational efficiency. The complexity of time-series data, with its temporal dependencies and potential non-stationarity, makes anomaly detection challenging but essential. Our research introduces ADSiamNet, a 1D Convolutional Neural Network-based Siamese network model for anomaly detection and rectification. ADSiamNet effectively identifies localized patterns in time-series data and smooths detected anomalies using a quantile-based technique. In tests with physical activity data from Actigraph watches and MOX2-5 sensors, ADSiamNet achieved accuracies of 98.65% and 85.0%, respectively, outperforming other supervised anomaly detection methods. The model uses a contrastive loss function to compare input sequences and adjusts network weights iteratively during training to recognize intricate patterns. Additionally, we evaluated various univariate time-series forecasting algorithms on datasets with and without anomalies. Results show that anomaly-smoothed data reduces forecasting errors, highlighting our approach’s effectiveness in enhancing time-series data analysis’s integrity and reliability. Future research will focus on multivariate time-series datasets.
IEEE (Institute of Electrical and Electronics Engineers)
2025
2025
2025
At the same time Arctic ecosystems experiences rapid climate change, at a rate four times faster than the global average, they remain burdened by long-range transported pollution, notably with legacy polychlorinated biphenyls (PCBs). The present study investigates the potential impact of climate change on seabird exposure to PCB-153 using the established Nested Exposure Model (NEM), here expanded with three seabird species, i.e. common eider (Somateria mollissima), black-legged kittiwake (Rissa tridactyla) and glaucous gull (Larus hyperboreus), as well as the filter feeder blue mussel (Mytulis edulis). The model's performance was evaluated using empirical time trends of the seabird species in Kongsfjorden, Svalbard, and using tissue concentrations from filter feeders along the northern Norwegian coast. NEM successfully replicated empirical PCB-153 concentrations, confirming its ability to simulate PCB-153 bioaccumulation in the studied seabird species within an order of magnitude. Based on global PCB-153 emission estimates, simulations run until the year 2100 predicted seabird blood concentrations 99% lower than in year 2000. Model scenarios with climate change-induced altered dietary composition and lipid dynamics showed to have minimal impact on future PCB-153 exposure, compared to temporal changes in primary emissions of PCB-153. The present study suggests the potential of mechanistic modelling in assessing POP exposure in Arctic seabirds within a multiple stressor context.
Royal Society of Chemistry (RSC)
2025
2025
2025
2025